Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Microbiol Resour Announc ; : e0115123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624203

RESUMO

Hepatitis B virus (HBV) infection is reported as a risk factor for chronic kidney disease (CKD). In this study, we sequenced the complete genome of an HBV strain identified in a CKD patient in Bangladesh, followed by genomic characterization and mutational analyses.

2.
Vet Med Sci ; 10(3): e1438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555573

RESUMO

INTRODUCTION: Lumpy skin disease, an economically significant bovine illness, is now found in previously unheard-of geographic regions. Vaccination is one of the most important ways to stop its further spread. AIM: Therefore, in this study, we applied advanced immunoinformatics approaches to design and develop an effective lumpy skin disease virus (LSDV) vaccine. METHODS: The membrane glycoprotein was selected for prediction of the different B- and T-cell epitopes by using the immune epitope database. The selected B- and T-cell epitopes were combined with the appropriate linkers and adjuvant resulted in a vaccine chimera construct. Bioinformatics tools were used to predict, refine and validate the 2D, 3D structures and for molecular docking with toll-like receptor 4 using different servers. The constructed vaccine candidate was further processed on the basis of antigenicity, allergenicity, solubility, different physiochemical properties and molecular docking scores. RESULTS: The in silico immune simulation induced significant response for immune cells. In silico cloning and codon optimization were performed to express the vaccine candidate in Escherichia coli. This study highlights a good signal for the design of a peptide-based LSDV vaccine. CONCLUSION: Thus, the present findings may indicate that the engineered multi-epitope vaccine is structurally stable and can induce a strong immune response, which should help in developing an effective vaccine towards controlling LSDV infection.


Assuntos
Vírus da Doença Nodular Cutânea , Vacinas , Animais , Bovinos , Proteínas de Membrana , Epitopos de Linfócito T , 60444 , Simulação de Acoplamento Molecular , Escherichia coli , 60470
3.
Animals (Basel) ; 13(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508046

RESUMO

Enterococci are commensal bacteria that inhabit the digestive tracts of animals and humans. The transmission of antibiotic-resistant genes through human-animal contact poses a potential public health risk worldwide, as zoonoses from wildlife reservoirs can occur on every continent. The purpose of this study was to detect Enterococcus spp. in rhesus macaques (Macaca mulatta) and to investigate their resistance patterns, virulence profiles, and biofilm-forming ability. Conventional screening of rectal swabs (n = 67) from macaques was followed by polymerase chain reaction (PCR). The biofilm-forming enterococci were determined using the Congo red agar plate assay. Using the disk diffusion test (DDT), antibiogram profiles were determined, followed by resistance and virulence genes identification by PCR. PCR for bacterial species confirmation revealed that 65.7% (44/67) and 22.4% (15/67) of the samples tested positive for E. faecalis and E. faecium, respectively. All the isolated enterococci were biofilm formers. In the DDT, enterococcal isolates exhibited high to moderate resistance to penicillin, rifampin, ampicillin, erythromycin, vancomycin, and linezolid. In the PCR assays, the resistance gene blaTEM was detected in 61.4% (27/44) of E. faecalis and 60% (9/15) of E. faecium isolates. Interestingly, 88.63 % (39/44) of E. faecalis and 100% (15/15) of E. faecium isolates were phenotypically multidrug-resistant. Virulence genes (agg, fsrA, fsrB, fsrC, gelE, sprE, pil, and ace) were more frequent in E. faecalis compared to E. faecium; however, isolates of both Enterococcus spp. were found negative for the cyl gene. As far as we know, the present study has detected, for the first time in Bangladesh, the presence of virulence genes in MDR biofilm-forming enterococci isolated from rhesus macaques. The findings of this study suggest employing epidemiological surveillance along with the one-health approach to monitor these pathogens in wild animals in Bangladesh, which will aid in preventing their potential transmission to humans.

4.
Saudi J Biol Sci ; 30(3): 103565, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36794045

RESUMO

A cross-sectional study was conducted to determine the seroprevalence of the Peste des Petits Ruminant (PPR) virus (PPRV) in sheep populations and to determine the potential epidemiological risk factors associated with this infection. Between October 2014 and March 2017, 2420 sheep serum samples were collected from ten selected PPR outbreak-prone districts in Bangladesh. The collected sera were analysed by competitive enzyme-linked immunosorbent assay (cELISA) test to detect antibodies against PPR. A previously designed disease report form was used to gather data on important epidemiological risk factors, and a risk analysis was performed to ascertain their association with PPRV infection. By cELISA, 44.3 % (95 % confidence interval:42.4-46.4 %) of sheep sera were positive for PPRV antibodies against PPR. In univariate analysis, the Bagerhat district had significantly higher seropositivity (54.1 %, 156/288) than other districts. Moreover, significantly higher (p < 0.05) seropositivity was found in the Jamuna River Basin (49.1 %, 217/442) compared to other ecological zones, in crossbreeds (60 %; 600/1000) related to native sheep, in males (69.8 %, 289/414) associated with females, in imported sheep (74.3 %, 223/300) compared to other sources, and in winter (57.2 %, 527/920) than in other seasons. In the multivariate logistic regression model, six possible risk factors were identified: study location, ecological zone, breed, sex, source, and season. The high seroprevalence of PPRV is significantly associated with several risk factors, suggesting that PPR is epizootic throughout the country.

5.
Vet Med Int ; 2022: 9076755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106173

RESUMO

Infectious bursal disease (IBD) is a highly contagious disease that causes significant economic loss in chickens. A cross-sectional study was conducted in the Mymensingh district of Bangladesh to determine the seroprevalence of IBD virus (IBDV) antibodies in backyard chickens and their association with different epidemiological risk factors. A total of 460 serum samples were randomly collected from backyard chickens that had not been previously vaccinated against IBDV. The collected sera were examined using an enzyme-linked immunosorbent assay (ELISA). Data on epidemiological risk factors were collected through face-to-face interviews with owners and subjected to both uni- and multivariable risk analyses to determine their association with IBDV infection. Using ELISA, the overall seroprevalence of IBDV antibodies in backyard chickens was 83.4% (95% confidence interval: 79.8%-86.6%), among which, a significantly higher seroprevalence was recorded in females (83.4%, 345/350), 4-6 weeks age group (95.3%, 244/256), and unhealthy (95.0%, 57/60) backyard chickens than those of males, other age groups, and healthy chickens, respectively. Furthermore, chickens reared in free-ranging housing systems (93.3%, 280/300) and poor-conditioned houses (98.0%, 147/150) showed a significantly higher seropositivity of IBDV antibodies than those reared in separated housing systems and other hygienic-conditioned houses, respectively. Moreover, compared with their counterparts, a higher but nonsignificant seroprevalence of IBDV antibodies was observed in backyard chickens that were selected from Fulbaria Upazila (88.8%; 80/90) and which were brought from the marketplace (85.7%, 60/70). A higher seropositivity of IBDV antibodies was shown to be statistically associated with various critical epidemiological risk factors, indicating that field strains of IBDV were exposed in backyard chickens and could be readily transferred horizontally. Proper prevention and control methods, villagers' awareness of IBD, and the rapid and widespread use of seroepidemiological investigations could help to reduce the spread of IBDV infection in backyard chickens.

6.
Vet World ; 15(4): 1066-1079, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35698528

RESUMO

Antimicrobial resistance (AMR) is a crucial and emerging multifactorial "One Health" problem involving human and animal health, agriculture, aquaculture, and environment; and posing a potential public health hazard globally. The containment of AMR justifies effective surveillance programs to explicate the magnitude of the problem across the contributing sectors. Laboratory-based AMR testing and characterization is the key component of an AMR surveillance program. An AMR surveillance program should have a "top management" for fund mobilization, planning, formulating, and multilateral coordinating of the surveillance activities. The top management should identify competent participating laboratories to form a network comprising a reference laboratory and an adequate number of sentinel laboratories. The responsibilities of the reference laboratory include the development of standardized test methods for ensuring quality and homogeneity of surveillance activities, providing training to the laboratory personnel, and in-depth AMR characterization. The sentinel laboratories will take the responsibilities of receiving samples, isolation and identification of microbes, and initial AMR characterization. The sentinel laboratories will use simple antimicrobial susceptibility test (AST) methods such as disk diffusion tests, whereas the reference laboratories should use automated quantitative AST methods as well as advanced molecular methods to explicit AMR emergence mechanisms. Standard guidelines set by Clinical Laboratory Standards Institute or the European Committee on Antimicrobial Susceptibility Testing, should be followed to bring about conformity and harmonization in the AST procedures. AMR surveillance program in animals is eventually similar to that in human health with the exception is that veterinary antibiotics and veterinary pathogens should be given preference here. Hence, the review study was envisaged to look deep into the structure of the AMR surveillance program with significance on laboratory-based AMR testing and characterization methods.

7.
Microlife ; 3: uqac011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223360

RESUMO

Lipopolysaccharide (LPS) is for most but not all Gram-negative bacteria an essential component of the outer leaflet of the outer membrane. LPS contributes to the integrity of the outer membrane, which acts as an effective permeability barrier to antimicrobial agents and protects against complement-mediated lysis. In commensal and pathogenic bacteria LPS interacts with pattern recognition receptors (e.g LBP, CD14, TLRs) of the innate immune system and thereby plays an important role in determining the immune response of the host. LPS molecules consist of a membrane-anchoring lipid A moiety and the surface-exposed core oligosaccharide and O-antigen polysaccharide. While the basic lipid A structure is conserved among different bacterial species, there is still a huge variation in its details, such as the number, position and chain length of the fatty acids and the decoration of the glucosamine disaccharide with phosphate, phosphoethanolamine or amino sugars. New evidence has emerged over the last few decades on how this lipid A heterogeneity confers distinct benefits to some bacteria because it allows them to modulate host responses in response to changing host environmental factors. Here we give an overview of what is known about the functional consequences of this lipid A structural heterogeneity. In addition, we also summarize new approaches for lipid A extraction, purification and analysis which have enabled analysis of its heterogeneity.

8.
Plants (Basel) ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34834813

RESUMO

Palmer amaranth is a problematic common weed species, especially in cotton. With the wide use of chemical herbicide and herbicide-tolerant transgenic cotton lines, Palmer amaranth populations have developed tolerance to commonly used herbicides. It is imperative to develop alternative weed control methods to slow the evolution of herbicide-resistant weed populations and provide new strategies for weed management. Eleven chromosome substitution (CS) cotton lines (CS-B26lo, CS-T17, CS-B16-15, CS-B17-11, CS-B12, CS-T05sh, CS-T26lo, CS-T11sh, CS-M11sh, CS-B22sh, and CS-B22lo) were screened for weed-suppressing abilities in this study. The cotton lines were tested using the established stair-step assay. Height (cm) and chlorophyll concentration (cci) were measured for each plant in the system. The most significant variation in Palmer amaranth height reduction among the CS lines was observed 21 days after establishment. CS-B22sh (76.82%) and T26lo (68.32%) were most effective in reducing Palmer amaranth height. The cluster analysis revealed that CS-B22sh, and CS-T26lo were clustered in one group, suggesting similar genetic potential with reference to Palmer amaranth growth and development. CS-B22sh showed novel genetic potential to control the growth and development of Palmer amaranth, a problematic weed in cotton fields. Future experimentation should implement more parameters and chemical testing to explore allelopathic interactions among CS lines and Palmer amaranth.

9.
Front Microbiol ; 12: 735305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603265

RESUMO

The subtype prevalence, drug resistance- and pathogenicity-associated mutations, and the distribution of the influenza A virus (IAV) isolates identified in Bangladesh from 2002 to 2019 were analyzed using bioinformatic tools. A total of 30 IAV subtypes have been identified in humans (4), avian species (29), and environment (5) in Bangladesh. The predominant subtypes in human and avian species are H1N1/H3N2 and H5N1/H9N2, respectively. However, the subtypes H5N1/H9N2 infecting humans and H3N2/H1N1 infecting avian species have also been identified. Among the avian species, the maximum number of subtypes (27) have been identified in ducks. A 3.56% of the isolates showed neuraminidase inhibitor (NAI) resistance with a prevalence of 8.50, 1.33, and 2.67% in avian species, humans, and the environment, respectively, the following mutations were detected: V116A, I117V, D198N, I223R, S247N, H275Y, and N295S. Prevalence of adamantane-resistant IAVs was 100, 50, and 30.54% in humans, the environment, and avian species, respectively, the subtypes H3N2, H1N1, H9N2, and H5N2 were highly prevalent, with the subtype H5N1 showing a comparatively lower prevalence. Important PB2 mutations such D9N, K526R, A588V, A588I, G590S, Q591R, E627K, K702R, and S714R were identified. A wide range of IAV subtypes have been identified in Bangladesh with a diversified genetic variation in the NA, M2, and PB2 proteins providing drug resistance and enhanced pathogenicity. This study provides a detailed analysis of the subtypes, and the host range of the IAV isolates and the genetic variations related to their proteins, which may aid in the prevention, treatment, and control of IAV infections in Bangladesh, and would serve as a basis for future investigations.

10.
J Adv Vet Anim Res ; 8(2): 323-329, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34395604

RESUMO

OBJECTIVE: Chicken infectious anemia virus (CIAV) is an economically important emerging infection of poultry as it causes immunosuppression and reduces egg production. Although it is worldwide distributed and first reported (single case) in Bangladesh in 2002, no epidemiological and serological investigations have been conducted. The current study aimed to conduct a serological investigation on the prevalence of CIAV infection in broiler breeder and layer farms in some selected areas of Bangladesh. MATERIALS AND METHODS: A total number of 460 sera samples were randomly collected from unvaccinated broiler breeder and layer flocks, of which 276 were from 11 broiler breeder farms and 184 from 12 layer farms. The sera samples were subjected to a commercially available enzyme-linked immunosorbent assay kit to observe antibodies induced by CIAV. RESULTS: Results demonstrated that the overall prevalence of CIAV was 83.6% among a total of 460 samples. In broiler breeder birds, the prevalence was 89.9%, whereas it was 78.3% in layer birds. A higher number of female birds was found to be seropositive than male birds. However, chickens of all age groups were found to be susceptible to the virus. CONCLUSIONS: These results indicate the presence of CIAV in Bangladesh, which may be the sequel of naturally occurring either vertical or horizontal infection in all bird flocks tested without clinical symptoms of the disease. A further epidemiological investigation will be required, followed by molecular isolation and characterization of the virus for suitable vaccine candidate selection and/or preparation.

11.
Plants (Basel) ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200224

RESUMO

Nutrients, including macronutrients such as Ca, P, K, and Mg, are essential for crop production and seed quality, and for human and animal nutrition and health. Macronutrient deficiencies in soil lead to poor crop nutritional qualities and a low level of macronutrients in cottonseed meal-based products, leading to malnutrition. Therefore, the discovery of novel germplasm with a high level of macronutrients or significant variability in the macronutrient content of crop seeds is critical. To our knowledge, there is no information available on the effects of chromosome or chromosome arm substitution on cottonseed macronutrient content. The objective of this study was to evaluate the effects of chromosome or chromosome arm substitution on the variability and content of the cottonseed macronutrients Ca, K, Mg, N, P, and S in chromosome substitution lines (CS). Nine chromosome substitution lines were grown in two-field experiments at two locations in 2013 in South Carolina, USA, and in 2014 in Mississippi, USA. The controls used were TM-1, the recurrent parent of the CS line, and the cultivar AM UA48. The results showed major variability in macronutrients among CS lines and between CS lines and controls. For example, in South Carolina, the mean values showed that five CS lines (CS-T02, CS-T04, CS-T08sh, CS-B02, and CS-B04) had higher Ca level in seed than controls. Ca levels in these CS lines varied from 1.88 to 2.63 g kg-1 compared with 1.81 and 1.72 g kg-1 for TM-1 and AMUA48, respectively, with CS-T04 having the highest Ca concentration. CS-M08sh exhibited the highest K concentration (14.50 g kg-1), an increase of 29% and 49% over TM-1 and AM UA48, respectively. Other CS lines had higher Mg, P, and S than the controls. A similar trend was found at the MS location. This research demonstrated that chromosome substitution resulted in higher seed macronutrients in some CS lines, and these CS lines with a higher content of macronutrients can be used as a genetic tool towards the identification of desired seed nutrition traits. Also, the CS lines with higher desired macronutrients can be used as parents to breed for improved nutritional quality in Upland cotton, Gossypium hirsutum L., through improvement by the interspecific introgression of desired seed nutrient traits such as Ca, K, P, S, and N. The positive and significant (p ≤ 0.0001) correlation of P with Ca, P with Mg, S with P, and S with N will aid in understanding the relationships between nutrients to improve the fertilizer management program and maintain higher cottonseed nutrient content.

12.
Open Vet J ; 11(1): 42-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898283

RESUMO

Background: Duck viral enteritis, commonly known as duck plague (DP), is an acute and contagious fatal disease in ducks, geese, and swans caused by the DP virus (DPV). It poses a serious threat to the growth of duck farming in the Haor (wetland) areas of Bangladesh. Aim: This study aimed to detect the circulating DPV by molecular characterization, followed by phylogenetic analysis, targeting the UL30 gene in infected ducks from five Haor districts in Bangladesh and to observe the variation in the genome sequence between the field virus and vaccine strain of DPV. Methods: A total of 150 samples (liver, 50; intestine, 50; and oropharyngeal tissue, 50) were collected from DP-suspected sick/dead ducks from 50 affected farms in Kishoreganj, Netrokona, B. Baria, Habiganj, and Sunamganj districts in Bangladesh. For the identification of DPV in collected samples, polymerase chain reaction (PCR) was utilized. Nucleotide sequences of the amplified UL30 gene were compared with those of other DPV strains available in GenBank. Results: Of the 150 samples, 90 (60%) were found to be positive for DPV, as confirmed by PCR. Organ-wise prevalence was higher in the liver (72%), followed by the intestine (64%) and oropharyngeal tissue (44%). Regarding areas, the highest and lowest prevalence in the liver and intestine was observed in Habiganj and B. Baria, respectively, whereas the highest and lowest prevalence in the oropharyngeal tissue was observed in B. Baria and Habiganj, respectively. Two isolates, BAU/KA/DPV(B1)/2014 from Kishoreganj and BAU/KA/DPV(B4)/2014 from Sunamganj were sequenced, and phylogenetic analysis revealed that these isolates are evolutionarily closely related to Chinese isolates of DPV. Additionally, the isolates of DPV BAU/KA/DPV(B1)/2014 and BAU/KA/DPV(B4)/2014 showed the highest (98%) similarity to each other. The nucleotide sequence of the isolate BAU/KA/DPV(B1)/2014 exhibited higher nucleotide variability (246 nucleotides) than that of the vaccine strain (accession no. EU082088), which may affect protein function and additional drug sensitivity. Conclusion: Based on the findings of the molecular study, it can be assumed that the Bangladeshi isolates and all Chinese isolates of DPV may have a common ancestry.


Assuntos
Patos , Mardivirus/genética , Doença de Marek/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Bangladesh/epidemiologia , Sequência de Bases , DNA Polimerase Dirigida por DNA/análise , Doença de Marek/virologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Doenças das Aves Domésticas/virologia , Prevalência , Proteínas Virais/análise
13.
Front Plant Sci ; 12: 779386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975965

RESUMO

Cotton genetic resources contain diverse economically important traits that can be used widely in breeding approaches to create of high-yielding elite cultivars with superior fiber quality and adapted to biotic and abiotic stresses. Nevertheless, the creation of new cultivars using conventional breeding methods is limited by the cost and proved to be time consuming process, also requires a space to make field observations and measurements. Decoding genomes of cotton species greatly facilitated generating large-scale high-throughput DNA markers and identification of QTLs that allows confirmation of candidate genes, and use them in marker-assisted selection (MAS)-based breeding programs. With the advances of quantitative trait loci (QTL) mapping and genome-wide-association study approaches, DNA markers associated with valuable traits significantly accelerate breeding processes by replacing the selection with a phenotype to the selection at the DNA or gene level. In this review, we discuss the evolution and genetic diversity of cotton Gossypium genus, molecular markers and their types, genetic mapping and QTL analysis, application, and perspectives of MAS-based approaches in cotton breeding.

14.
J Microbiol Immunol Infect ; 54(2): 175-181, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32624360

RESUMO

Coronavirus disease-19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is now a pandemic threat. This virus is supposed to be spread by human to human transmission. Cellular angiotensin-converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2 which is identical or similar in different species of animals such as pigs, ferrets, cats, orangutans, monkeys, and humans. Moreover, a recent study predicted that dogs might be secondary hosts during the evolution of SARS-CoV-2 from bat to human. Therefore, there is a possibility of spreading SARS-CoV-2 through domestic pets. There are now many reports of SARS-CoV-2 positive cases in dogs, cats, tigers, lion, and minks. Experimental data showed ferrets and cats are highly susceptible to SARS-CoV-2 as infected by virus inoculation and can transmit the virus directly or indirectly by droplets or airborne routes. Based on these natural infection reports and experimental data, whether the pets are responsible for SARS-CoV-2 spread to humans; needs to be deeply investigated. Humans showing clinical symptoms of respiratory infections have been undergoing for the COVID-19 diagnostic test but many infected people and few pets confirmed with SARS-CoV-2 remained asymptomatic. In this review, we summarize the natural cases of SARS-CoV-2 in animals with the latest researches conducted in this field. This review will be helpful to think insights of SARS-CoV-2 transmissions, spread, and demand for seroprevalence studies, especially in companion animals.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Especificidade de Hospedeiro , SARS-CoV-2 , Zoonoses/transmissão , Zoonoses/virologia , Animais , Interações entre Hospedeiro e Microrganismos , Humanos , Pandemias , Animais de Estimação/virologia , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Especificidade da Espécie
15.
Plants (Basel) ; 9(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321878

RESUMO

Upland cotton (Gossypium hirsutum L.) growth and development during the pre-and post-flowering stages are susceptible to high temperature and drought. We report the field-based characterization of multiple morpho-physiological and reproductive stress resilience traits in 11 interspecific chromosome substitution (CS) lines isogenic to each other and the inbred G. hirsutum line TM-1. Significant genetic variability was detected (p < 0.001) in multiple traits in CS lines carrying chromosomes and chromosome segments from CS-B (G. barbadense) and CS-T (G. tomentosum). Line CS-T15sh had a positive effect on photosynthesis (13%), stomatal conductance (33%), and transpiration (24%), and a canopy 6.8 °C cooler than TM-1. The average pollen germination was approximately 8% greater among the CS-B than CS-T lines. Based on the stress response index, three CS lines are identified as heat- and drought-tolerant (CS-T07, CS-B15sh, and CS-B18). The three lines demonstrated enhanced photosynthesis (14%), stomatal conductance (29%), transpiration (13%), and pollen germination (23.6%) compared to TM-1 under field conditions, i.e., traits that would expectedly enhance performance in stressful environments. The generated phenotypic data and stress-tolerance indices on novel CS lines, along with phenotypic methods, would help in developing new cultivars with improved resilience to the effects of global warming.

16.
J Adv Vet Anim Res ; 7(3): 546-553, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005682

RESUMO

OBJECTIVE: The present study estimated the seroprevalence of avian reovirus (ARV) infections in backyard chickens of the Mymensingh district in Bangladesh. MATERIALS AND METHODS: Considering several risk factors, a total of 460 serum samples were collected from backyard chickens from eight Upazilas of the Mymensingh district in Bangladesh. Blood samples were taken from the wing vein using 3-ml sterile syringes and kept at room temperature for clotting in a slanting position and then transported to the laboratory maintaining the cool chain. Subsequently, the prepared sera were harvested and stored at -20°C until used. Finally, an indirect enzyme-linked immunosorbent assay (ELISA) was performed to detect ARVspecific antibodies using a commercial ARV antibody detection ELISA test kit. RESULTS: The results revealed high prevalence rates of ARV antibodies, with a total seroprevalence of 69.78% (321/460). Area-wise, 74.55% (82/110) seroprevalence was recorded as the highest in Mymensingh Sadar, whereas 64% (32/50) was the lowest in Gauripur Upazila. With regard to sex, female chickens showed a significantly higher (p < 0.05) seroprevalence as 90.33% (271/300) compared to male chickens 31.25% (50/160). With regard to age groups, the seroprevalence of ARV infection was 59.33% (89/150) within 2-8 weeks, 82% (205/250) within 9-16 weeks, and 45% (27/60) within 17-20 weeks, respectively. Based on hygienic conditions, the highest seroprevalence of ARV was noted in backyard chickens housed in poor conditions 80% (120/150) than good conditions 50% (40/80). Backyard chickens reared in free-ranging conditions exhibited a significantly higher seroprevalence 73.33% (220/300) of ARV antibodies compared to rearing in separate houses 63.12% (101/160). The seroprevalence of ARV was higher in crossbreeds 71.67% (43/60), brought from market 76% (38/50), and unhealthy 78.57% (55/70) backyard chickens than non-descriptive indigenous 69.5% (278/400), home-reared 69.02% (283/410), and healthy chickens 68.21% (266/390). CONCLUSION: The high prevalence of ARV antibodies revealed in the current study indicates an extensive exposure of ARV to backyard chickens in Bangladesh that may be transmitted naturally to other chickens, ultimately leading to ominous economic effects on the poultry sector.

17.
Plants (Basel) ; 9(9)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842514

RESUMO

Micronutrients are essential for plant growth and development, and important for human health nutrition and livestock feed. Therefore, the discovery of novel germplasm with significant variability or higher micronutrients content in crop seeds is critical. Currently, there is no information available on the effects of chromosome or chromosome arm substitution in cotton on cottonseed micronutrients. Thus, the objective of this study was to evaluate the effects of chromosome or chromosome arm substitution on the variability and levels of micronutrients B, Fe, Cu, Zn, Mn, and Ni in cottonseed from chromosome substitution (CS) cotton lines. Our hypothesis was that interspecific chromosome substitution in cotton can affect cottonseed micronutrients content, resulting in significant differences and variabilities of these nutrients among CS lines and between CS lines and the controls. Nine CS lines were grown in two-field experiments at two locations (in 2013 in South Carolina, USA; and in 2014 in Mississippi, USA). TM-1 (the recurrent parent of the CS line) and AM UA48 (cultivar) were used as control. The results showed significant variability among CS lines compared to the controls AM UA48 and TM-1. For example, in South Carolina (SC), B concentration in cottonseed ranged from 10.35 mg kg-1 in CS-M02 to 13.67 mg kg-1 in CS-T04. The concentration of Cu ranged from 4.81 mg kg-1 in CS-B08sh to 7.65 mg kg-1 in CS-T02, and CS-T02 was higher than both controls. The concentration of Fe ranged from 36.09 mg kg-1 to 56.69 mg kg-1 (an increase up to 57%), and six CS lines (CS-B02, CS-B08sh, CS-M02, CS-M04, CS-T02, and CS-T04) had higher concentration than both controls in 2013. In 2014 at the Mississippi location (MS), similar observation was found with CS lines for micronutrients content. The CS lines with higher concentrations of these micronutrients can be used as a genetic tool toward QTL identification for desired seed traits because these lines are genetically similar with TM-1, except the substituted chromosome or chromosome segment pairs from the alien species. Chromosome substitution provides an effective means for upland cotton improvement by targeted interspecific introgression, yielding CS lines that facilitate trait discovery, such as seed micronutritional qualities, due to increased isogenicity and markedly reduced complexity from epistatic interactions with non-target alien chromosomes. The positive correlation between B, Cu, and Fe at both locations, between Ni and Mn, between Zn and Cu, and between Zn and Ni at both locations signify the importance of a good agricultural and fertilizer management of these nutrients to maintain higher cottonseed nutrient content.

18.
J Adv Vet Anim Res ; 7(2): 360-366, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32607369

RESUMO

OBJECTIVE: This research work was conducted for the molecular characterization of the circulating foot-and-mouth disease (FMD) virus in Bangladesh and revealed out their serotype. MATERIALS AND METHODS: The VP1 gene of six field isolates of FMD virus (FMDV) serotypes (two serotypes O, two serotypes A, and two serotypes Asia 1) was subjected for sequencing and phylogenetic analysis. Neighbor-joining trees were constructed by using the Molecular Evolutionary Genetics Analysis 6, having the field nucleotide sequences of FMDV and related sequences available in the GenBank. RESULTS: The nucleotide sequences of the VP1 genes of serotypes O, A, and Asia-1 of the isolates revealed that overall isolates were 91%-100% similar to the isolates reported from Bangladesh and other neighboring countries. Among the isolates reported from Bangladesh, serotype O had 98%-100% identity, serotype A had 91%-100% identity, and serotype Asia-1 had 94%-100% identity. A phylogenetic analysis revealed that the FMDV serotype O PanAsia-02 sub-lineage was confirmed in Bangladesh under the Middle East-South Asian (ME-SA) topotype. On the other hand, we identified genotype VII (18) of Asia topotype (serotype A) and lineage C (serotype Asia-1). CONCLUSION: The FMDV serotype O PanAsia-02 sub-lineage was confirmed in Bangladesh under the ME-SA topotype for the first time. The extensive cross-border animal movement from neighboring countries may act as the source of diversified FMDV serotypes in Bangladesh.

19.
Vet World ; 13(2): 266-274, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32255968

RESUMO

BACKGROUND AND AIM: Houseflies (Musca domestica) are synanthropic insects which serve as biological or mechanical vectors for spreading multidrug-resistant bacteria responsible for many infectious diseases. This study aimed to detect antibiotic-resistant bacteria from houseflies, and to examine their resistance genes. MATERIALS AND METHODS: A total of 140 houseflies were captured using sterile nylon net from seven places of Mymensingh city, Bangladesh. Immediately after collection, flies were transferred to a sterile zipper bag and brought to microbiology laboratory within 1 h. Three bacterial species were isolated from houseflies, based on cultural and molecular tests. After that, the isolates were subjected to antimicrobial susceptibility testing against commonly used antibiotics, by the disk diffusion method. Finally, the detection of antibiotic resistance genes tetA, tetB, mcr-3, mecA, and mecC was performed by a polymerase chain reaction. RESULTS: The most common isolates were Staphylococcus aureus (78.6%), Salmonella spp., (66.4%), and Escherichia coli (51.4%). These species of bacteria were recovered from 78.3% of isolates from the Mymensingh Medical College Hospital areas. Most of the isolates of the three bacterial species were resistant to erythromycin, tetracycline, penicillin and amoxicillin and were sensitive to ciprofloxacin, ceftriaxone, chloramphenicol, gentamicin, and azithromycin. Five antibiotic resistance genes of three bacteria were detected: tetA, tetB, mcr-3, and mecA were found in 37%, 20%, 20%, and 14% isolates, respectively, and no isolates were positive for mecC gene. CONCLUSION: S. aureus, Salmonella spp., and E. coli with genetically-mediated multiple antibiotic resistance are carried in houseflies in the Mymensingh region. Flies may, therefore, represent an important means of transmission of these antibiotic-resistant bacteria, with consequent risks to human and animal health.

20.
J Adv Vet Anim Res ; 7(1): 34-41, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32219107

RESUMO

OBJECTIVE: The study was aimed to analyze the microbiological quality of mixed vegetable salads and to understand the risk related with its consumption from different restaurants around Bangladesh Agricultural University campus in Mymensingh. MATERIALS AND METHODS: Sixty (60) samples of mixed vegetable salads were taken from twelve (12) different restaurants in five different time points from each restaurant. In parallel, restaurant workers were asked for handling practices while the consumers were interviewed about their salad consumption pattern and whether they had experienced any health-related problems. Microbial risk assessment of Staphylococcus spp., Salmonella spp., and Escherichia coli was estimated by Monte Carlo simulation (10,000 iterations), an exponential model. RESULTS: Aerobic plate count was ranged from 7.73 ± 0.61 to 9.04 ± 0.26 log cfu/gm, Staphylococcus spp. from 4.64 ± 0.61 to 6.42 ± 0.53 log cfu/gm, Salmonella spp. from 4.75 ± 0.08 to 5.27 ± 0.53 log cfu/gm, and E. coli from 4.98 ± 0.20 to 6.66 ± 0.80 log cfu/gm. From the survey, it was found that total consumers had 18% chances where the male had 13% and the female had 30% chances of being infected with salads. Again frequent, average, and occasional consumers had 31%, 13%, and 0% chances, respectively, of being infected with those salads. From the Monte Carlo simulation, the calculated mean annual risks of Staphylococcus spp., Salmonella spp., and E. coli infection for the three exposure scenarios were found to be about 100%. CONCLUSION: The study actually revealed the potential microbial contamination in mixed vegetable salads which may impact on food safety and human health. So, the findings suggest that following hygienic measures during processing and handling the microbiological quality of mixed vegetables salads can be improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...